
Strategy for the Measurement of Vector Boson
Asymmetry at RHIC

Elke Ashchenauer, Salvatore Fazio, and Dmitri Smirnov∗

Physics Department, Brookhaven National Lab

October 10, 2012

Version 1

1 Introduction

In this study we measure the asymmetry of the vector bosons produced in transversely
polarized proton collisions. First, we focus on the W boson and the lepton produced
from its decay. Most of the developed formulae can be used in the measurement of Z
boson asymmetry, and we consider this case later. From the measured asymmetry we can
also check the prediction about the sign change of the Sivers function in DY and SIDIS
interactions:

fSIDIS
q/h↑ (x, k⊥) = −fDY

q/h↑(x, k⊥). (1)

The single spin asymmetry AN for the W bosons and the lepton l from the W decay
has been derived in ??. It is parametrized based on the analyses of SIDIS data and given
as a function of direction and transverse momentum. For the case of W we have:

AW
N = AW

N (yW , φW , qT ) ≡ AN(y, φ, pT ) = AN(Ω, pT ), (2)

where Ω = {y, φ} is simply used as a shorthand for the direction of the particle in the
lab frame. Similarly, for the lepton the expectated asymmetry depends on the direction
of the lepton and its transverse momentum:

Al
N = Al

N(ηl, φl, pT ) ≡ AN(y, φ, pT ) = AN(Ω, pT ) (3)

2 Experimental Viewpoint

In the experiment we can separately measure full and differential cross sections for spin-up
(σ↑), spin-down (σ↓), and unpolarized (σ0) interactions. We are interested in the polarized
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cross sections which are given by:

σ↑ = σ0(1 + AN
~P↑ · ~n), (4)

σ↓ = σ0(1− AN
~P↓ · ~n). (5)

I am not sure polarization enters the expression for the cross section. It is possible that
polarization appears only on the yield level. . . In the following we assume that the po-
larization vector does not significantly deviate from the vertical direction given by the
normal unit vector ~n along the vertical y axis so, the notation is P ≡ ~P · ~n. We also as-
sume the same magnitude of the polarization vector for spin-up and spin-down bunches,
i.e. P = P↑ = P↓. For unpolarized cross section σ0 ≡ (σ↑ + σ↓)/2 the asymmetry AN is
expressed as:

AN =
1

P

σ↑ − σ↓
σ↑ + σ↓

(6)

The number of recorded events in which the particle is produced with momentum pT
at angle Ω is:

dN↑/↓

dΩdpT
(Ω, pT ) = L↑/↓

dσ0

dΩdpT
(Ω, pT )ε(Ω, pT )

(
1± AN(Ω, pT )P

)
, (7)

where detection efficiency ε does not depend on the spin direction of the interacting
proton. In fact, every individual event can be tagged by the nominal spin of colliding
protons. We thus can bin all collected data in four bins N↑↑, N↑↓, N↓↑, and N↓↓. For the
single spin asymmetry the polarization of one of the beams is ignored by combining the
yields with opposite spins, e.g.

N↑ ≡ N↑0 = N↑↑ +R 0↑
0↓
N↑↓, (8)

N↓ ≡ N↓0 = N↓↑ +R 0↑
0↓
N↓↓, (9)

where re-weighting factor R 0↑
0↓

addresses a possible relative difference in the spin-up and

spin-down intensities of the other beam. Studies have shown that R 0↑
0↓
≈ 1 with good

precision.
We bin our data sample in three observable variables {y, φ, pT} with center and width

of the i-th bin being {yi, φi, pT,i} and {∆yi,∆φi,∆pT,i} ≡ {∆Ωi{yi,∆φi},∆pT,i} ≡ ∆i

respectively. The number of events in each bin, Ni, is calculated by integrating both sides
of (7) within the bin:

N↑/↓,i =

∫
∆i

dN↑/↓

dΩdpT
dΩdpT . (10)

In that bin we assume the average value:

AN,i =
1

∆i

∫
∆i

ANdΩdpT , (11)
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and similarly for the cross section (σ0,i) and efficiency (εi). Finally, for the yields in each
bin we can write:

N↑/↓,i = L↑/↓σ0,iεi∆Ωi∆pT,i (1± AN,i(Ω, pT )P ) (12)

The spacial distributions of the physical asymmetry and the cross sections are the
same for the spin-up and spin-down interactions with respect to the spin direction. We
can use this fact to easily get rid of the quantities of no interest in (12). This is achieved by
constructing geometric means

√
N↑(φi)N↓(φi + π) and

√
N↑(φi + π)N↓(φi) of the yields

N↑(φi) = L↑σ0(φi)ε(φi)∆Ωi∆pT (1 + AN(φi)P ) (13)

N↑(φi + π) = L↑σ0(φi + π)ε(φi + π)∆Ωi∆pT (1 + AN(φi + π)P ) (14)

N↓(φi + π) = L↓σ0(φi + π)ε(φi + π)∆Ωi∆pT (1− AN(φi + π)P ) (15)

N↓(φi) = L↓σ0(φi)ε(φi)∆Ωi∆pT (1− AN(φi)P ) (16)

Using the relations for the asymmetry and cross section AN(φi + π) = −AN(φi), σ0(φi +
π) = σ0(φi) we get for AN

AN,i =
1

P

√
N↑(φi)N↓(φi + π)−

√
N↑(φi + π)N↓(φi)√

N↑(φi)N↓(φi + π) +
√
N↑(φi + π)N↓(φi)

(17)

3 Correction for Background

In this analysis an optimal set of cuts is applied to select signal enriched events without
significant loss in the final statistics. The final yiels include some fraction of background
events fB which affects the measured asymmetry AN . In order to extract the signal
asymmetry we decompose AN as following:

AN = fsigA
sig
N + fBA

B
N , (18)

with fsig = 1 − fB. The last term in (18) may include contributions from various back-
grounds which will be discussed later. The background fractions and asymmetries have
to be estimated in order to extract the final asymmetry of the signal:

Asig
N =

AN + fBA
B
N

1− fB
(19)

4 Sivers Sign Change Extraction

A binned likelihood method can be used to check the sensitivity of our data to the sign
of the Sivers function. A direct way of doing this is to compare the measured asymmetry
(17) with background corrected expectations from (18). The signal asymmetry Asig

N in
this case directly comes from the model predictions (2) or (3). The simplest likelihood
function can be constructed as a product of gaussian terms over all bins:

L =
∏
i

G(AN,i, σAN,i
;Asig

N,i). (20)
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Alternatively, the Sivers sign can be extracted from the Poisson probabilities of measured
given the expected yields.

L =
∏
i,↑,↓

P (Ni;N
sig
i +Bi). (21)

While this method is more “classic” it requires the explicit knowledge of luminosity, un-
polarized cross section, and efficiencies. These values are needed to calculate the expected
number of events using (12). The two methods are expected to give consistent results.
However, the difference should be more perceptible through the addition of systematic
effects.
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